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ABSTRACT Clostridium perfringens is an important pathogen to human and animals
and causes a wide array of diseases, including histotoxic and gastrointestinal ill-
nesses. C. perfringens spores are crucial in terms of the pathogenicity of this bacte-
rium because they can survive in a dormant state in the environment and return to
being live bacteria when they come in contact with nutrients in food or the human
body. Although the strategies to inactivate C. perfringens vegetative cells are effec-
tive, the inactivation of C. perfringens spores is still a great challenge. A number of
studies have been conducted in the past decade or so toward developing efficient
inactivation strategies for C. perfringens spores and vegetative cells, which include
physical approaches and the use of chemical preservatives and naturally derived an-
timicrobial agents. In this review, different inactivation strategies applied to control
C. perfringens cells and spores are summarized, and the potential limitations and
challenges of these strategies are discussed.
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Clostridium perfringens is an anaerobic, spore-forming bacterium and can be found
ubiquitously in the environment, including the guts of humans and other animals

(1, 2). Although most strains of this species do not cause any harm to human and
animals, a few of them are of concern due to their ability to cause a variety of histotoxic
and gastrointestinal (GI) diseases (3, 4). C. perfringens can produce as many as 17
different toxins, but there is not a single strain that produces all of these toxins (3).
Depending on the production of four major toxins (alpha, beta, epsilon, and iota), C.
perfringens strains are classified into five toxin types (types A to E) (3). About 5% of
global C. perfringens type A isolates produce C. perfringens enterotoxin (CPE), which is
the major virulence factor for the pathogenesis of C. perfringens-associated food
poisoning (FP) and nonfoodborne (NFB) GI diseases (3–6). Interestingly, most of the
reported FP cases have been associated with C. perfringens isolates harboring the
CPE-encoding gene (cpe) on the chromosome (C-cpe isolates), whereas isolates that
possess cpe on the plasmid (P-cpe isolates) are linked to the occurrence of NFB GI
diseases such as antibiotic-associated diarrhea and sporadic diarrhea, with some ex-
ceptions (7–9).

In addition to producing CPE, C. perfringens FP isolates have the ability to form
spores that are highly resistant to various stress factors such as high temperature, high
pressure, toxic chemicals, and radiation (10). However, C. perfringens vegetative cells are
less resistant to these stress factors than their spore counterparts, and these resistance
phenotypes vary among strains and growth conditions (11–13). For example, vegeta-
tive cells and spores of C. perfringens type A C-cpe isolates exhibited significantly higher
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heat resistance than those of P-cpe and cpe-negative isolates (11, 12, 14). Besides
resistance to heat, vegetative cells and spores of C-cpe isolates possess higher resis-
tance to various food preservative measures, including low temperature, osmosis-
induced stress, and nitrite, than those of the P-cpe isolates (13, 15). These facts suggest
the importance of developing an effective strategy that could kill or inhibit the growth
of different strains of C. perfringens simultaneously.

The possession of high resistance properties facilitates the survival of C. perfringens
spores in food vehicles, where they undergo germination and outgrowth to revert to
vegetative cells and then cause FP illness in humans upon consumption of these
contaminated foods (2). C. perfringens is currently ranked as the third most common
foodborne pathogen in the United States (16), and it is estimated that almost a million
cases of food-associated illnesses occurred annually in the United States, implicating C.
perfringens as an etiological agent (17). This high incidence would subsequently lead to
substantial losses in terms of economics, manpower, and medical expenses (18).
Therefore, to minimize these substantial economical losses, strategies are being devel-
oped to inactivate the spores and vegetative cells of C. perfringens, especially in food
industries and food products. In this review, we discuss the current status of different
approaches to effectively inactive the vegetative cells and spores of C. perfringens.

PHYSICAL APPROACHES

C. perfringens vegetative cells can easily be killed by introducing various abusive
physical conditions, but their spore counterparts are difficult to inactivate with these
treatments. However, studies have shown that either the manipulation of physical condi-
tions or combined treatment with two or more stress factors was able to inactivate the
spores (15, 19–21). Here, we discuss several of the physical parameters that can be used to
inactivate spores and vegetative cells and their prospects for use in the food industry.

Thermal treatment. Thermal treatment is one of the most common ways of
sterilizing the products, as excessive heat destroys the majority of the bacterial
cells. It has been reported that C. perfringens spores are highly heat resistant (22),
although the resistance patterns vary considerably with the strain and growth
conditions, such as medium and incubation temperature (11). However, a signifi-
cant inactivation of C. perfringens spores can be achieved by exposing them to high
temperature for a longer period of time (23, 24). Wang et al. showed that more than
90% of C. perfringens spores were inactivated when they were incubated in water
at 90 to 100°C for 10 to 30 min (23). Another report demonstrated that higher
temperatures (110°C) were required to reduce the number of C. perfringens spores
in the meat system (24) (Table 1). The introduction of other treatments (Table 1) in
combination with moderate and high temperatures was also effective in the
inactivation of both vegetative cells and spores of C. perfringens (19–21). For
example, (i) implementation of ozone treatment followed by heat effectively inac-
tivated both vegetative cells and spores of C. perfringens in a meat product (19), (ii)
the simultaneous use of both thermal treatment and ultrasound or thermal treat-
ment followed by ultrasound significantly increased the effectiveness of thermal
inactivation of C. perfringens spores in a beef slurry (20), and (iii) pretreatment with
gamma radiation followed by thermal treatment significantly decreased the num-
ber of spore counts (but interestingly, the reverse was not effective) (21).

Pressure treatment. High hydrostatic pressure (HHP) is one of the most widely
used pasteurization techniques for food products other than temperature-dependent
pasteurization. HHP treatment of food is more effective in killing of vegetative cells, and
to some extent bacterial spores, than the conventional thermal processing of foods. It
also retains the nutritional and sensory quality of the food products and consumes less
energy than the other processing techniques (25). A combined treatment with HHP
(650 MPa), temperature (75°C), and low pH (4.75) resulted in a 5.1-fold reduction of
spores of C. perfringens type A P-cpe isolates but was not as effective (2.8-fold reduc-
tion) against spores of C. perfringens C-cpe isolates in laboratory medium (15). However,
Gao et al. showed that the combined effects of HHP (654 MPa), heat (74°C), and nisin
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TABLE 1 Effects of different inactivation strategies on the inhibition of C. perfringens cells and spores

Inactivation strategy Matrixa Treatment Inhibitory effect Reference(s)

Physical approaches
Temp Pork luncheon roll 1.3 min at 70°C for vegetative cells and

36 s at 110°C for spores
6-log reduction of spores

and vegetative cellsb

24

Temp and ozone Beef surface 5 ppm aqueous ozone at 75°C 1–2-log CFU/g reduction of
spores and vegetative
cells

19

Temp and ultrasound Beef slurry Thermosonication (24 kHz, 0.33 W/g) at
75°C for 60 min

�1.5-log reduction of
spores

20

Temp and radiation Buffer Gamma radiation (0.7 Mrad) followed by
thermal treatment at 103°C

6-log reduction of spores 21

HHP and temp Poultry meat 586 MPa, 73°C for 10 min after spore
germination with �50 mM L-asparagine
and KCl mixtures

2–4-log CFU/g reduction of
spore germination and
outgrowth

103

HHP, pH, and temp Buffer 650 MPa, 75°C at pH 4.75 1–5-fold reduction of
spores for C-cpe isolates,
4–6-fold reduction for
P-cpe isolates

15

Chemical agents
Nitrate and nitrite Broth �0.3% (wt/vol) NaNO2 1–4-log CFU/ml reduction

in vegetative cells and
spores

13

Broth 100 ppm NaNO2 at 11°C 4-log CFU/ml reduction of
spores and vegetative
cells

30

Ham 200 ppm NaNO2 2–4-log CFU/g reduction of
spores and vegetative
cellsb

29

Sorbic acid Buffer 1% (vol/vol) sodium sorbate 30–70% inhibition of spore
germination for C-cpe
isolates, and 50–90%
inhibition for P-cpe
isolates

39

Benzoic acid Buffer 1% (vol/vol) sodium benzoate 30–70% inhibition of spore
germination for C-cpe
isolates, and 98%
inhibition for P-cpe
isolates

39

Lactic acid Tajik-sambusa 2% (wt/wt) potassium lactate 1–2-log CFU/g reduction of
spore germination and
outgrowthb

44

Injected pork �2% (wt/wt) calcium lactate, �3% (wt/wt)
potassium lactate, or �3% (wt/wt)
sodium lactate

4–6-log CFU/g reduction of
spore germination and
outgrowthb

45

Injected turkey �2% (wt/wt) calcium lactate, �3% (wt/wt)
potassium lactate, or �3% (wt/wt)
sodium lactate

4–6-log CFU/g reduction of
spore germination and
outgrowthb

45

Uncured ground turkey 2% (wt/wt) potassium lactate 2–4-log CFU/g reduction of
spore germination and
outgrowthb

42

Sous-vide chicken �1.5% (wt/wt) sodium lactate 3–6-log CFU/g reduction of
spore germination and
outgrowthb

43

Acetic acid Roast beef �2% MOstatin LV1 6–7-log CFU/g reduction of
spore germination and
outgrowthb

48

Ground turkey roast 2.5% MOstatin V or 3.5% MOstatin LV 3–5-log CFU/g reduction of
spore germination and
outgrowthb

49

Phosphates Poultry meat 1% (wt/vol) sodium tripolyphosphate 2–3-log CFU/g reduction of
spore germination and
outgrowthb

52

(Continued on next page)
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(328 IU/ml) could effectively enhance the inactivation activity of HHP toward C.
perfringens spores in milk products (26).

CHEMICAL AGENTS

Different types of chemical agents have been proven to be effective in controlling
C. perfringens. Most of the studies have been focused on chemicals that can be used in
food items as preservatives as well as flavor and color enhancers (27). Here, we discuss
several of the common chemicals that have been used as food additives as well as food
preservatives and have implications for the inhibition of C. perfringens spores and
vegetative cells (Table 1).

Nitrate and nitrite. Nitrate and nitrite are well-known chemical preservatives for
food to control spore-forming bacteria and have been used mostly in meat, fish, and
cheese products for long periods of time (1, 27). These are also known as food additives,
especially in cured meat, where nitrate and nitrite provide flavor and color stabilization
(27). Nitrite can exert its antimicrobial effect against both vegetative cells and their
spore counterparts, although spores are generally much more resistant to nitrite than
growing cells (28). Nitrite affects the germination and outgrowth of C. perfringens
spores in different types of meat products, and it has been reported that conventionally
cured meat products, which have nitrite supplements, showed inhibition of the growth
of C. perfringens (29, 30). However, commercially available organic meat products have
the potential to support growth of C. perfringens (31, 32). Although nitrite is a very good
antimicrobial agent, unfortunately its use in food products is limited due to its ability
to form carcinogenic derivatives (33). This led to a search for alternative nitrite sources
from natural compounds, although these compounds are not as effective as those used
in conventionally cured meat for inhibition of the outgrowth of C. perfringens spores
(34).

TABLE 1 (Continued)

Inactivation strategy Matrixa Treatment Inhibitory effect Reference(s)

Natural antimicrobials
Plant

Cinnamaldehyde Cooked ground beef
and turkey

1% (wt/wt) cinnamaldehyde 3–4-log CFU/g reduction of
spore germination and
outgrowthb

61, 62

Carvacrol, thymol, and
oregano oil

Cooked ground beef
and turkey

2% (wt/wt) carvacrol, 2% (wt/wt) thymol,
and 2% (wt/wt) oregano oil

3–5-log CFU/g reduction of
spore germination and
outgrowthb

61, 62

Tannins Broth �5 mg/ml chestnut tannins Up to 7-log CFU/ml
reduction of vegetative
growth

72

Green tea Cooked ground chicken
and pork

2% (wt/wt) green tea extracts 3–4-log CFU/g reduction of
spore germination and
outgrowthb

76

Animal
Fatty acids Buffer 1 mg/ml lauric acid �7-log reduction of

vegetative growth
79

Lysozyme Broth 156 �g/ml lysozyme from hen egg white Complete inhibition of
vegetative cells

85

Chitosan Cooked ground beef
and turkey

3% (wt/wt) chitosan 4–5-log CFU/g reduction of
spore germination and
outgrowthb

90

Microbial
Nisin Broth �10 �M nisin Complete inhibition of

spore outgrowth and
vegetative growth

92

Lacticin Fresh pork sausage 2,500 AU/g lacticin 3147 with 2% (wt/vol)
sodium lactate and/or 2% (wt/vol)
sodium citrate

3–4-log CFU/g reduction of
spore germination and
outgrowthb

95

aDifferent growth media were used for the inactivation strategies. Most of the experiments were performed with different meat products, as C. perfringens is a
common pathogen in food products, especially in meats.

bThe reduction value indicates the number of spores and/or cells compared to the total number of spores and/or cells of control samples (with no treatment).
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Organic acids. Organic acids are used as food preservatives and have been found to
act as inhibitory agents for C. perfringens growth. Two of the most common and oldest
organic acids used in food industries are sorbic acid (sorbate) and benzoic acid (benzoate).
Both of these organic acids and their salts have been listed as generally recognized as safe
(GRAS) compounds as food preservatives, with permissible concentrations approved by the
U.S. Food and Drug Administration (FDA) (http://www.accessdata.fda.gov/scripts/fdcc
/?set�SCOGS). Benzoates are one of the most widely used chemical antimicrobials
because of their low cost, easy incorporation into foods, lack of impartment of color
upon addition, and low toxicity (35, 36). However, sorbates are known mainly as
antifungal agents. Tompkin et al. reported no difference in C. perfringens viability in
presence or absence of potassium sorbate (37), but a follow-up study reported suc-
cessful inhibition of C. perfringens growth by potassium sorbate in cooked sausage (38).
Recently, our group showed the inhibitory effects of sorbate and benzoate derivatives
against C. perfringens spore germination, outgrowth, and vegetative growth in both
rich medium and a meat model system (39). Although the permissible levels of sorbate
(0.3%, vol/vol) and benzoate (0.1%, vol/vol) could arrest C. perfringens spore outgrowth,
higher concentrations (1%, vol/vol) are needed for the inhibition of spore germination
in rich medium (Table 1) (39). Nevertheless, the permissible concentrations of sodium
benzoate and potassium sorbate failed to control C. perfringens spore germination and
outgrowth in cooked poultry meat during improper storage at 37°C, and this might
result from the weak dissociation of the antimicrobials, rendering them ineffective
against target microorganisms (39, 40).

Lactic acid and its derivatives of different salts have been reported to inhibit the
germination and outgrowth of C. perfringens spores in different meat products, includ-
ing injected turkey, injected pork, sous-vide chicken products, and tajik sambusa, under
various abusive conditions (41–45). The lactate group represents a group of primary
compounds responsible for the inhibition of germination and outgrowth of spores of
Clostridium spp. (41) and could be utilized as an alternative to nitrite to warrant product
safety during extended cooling of uncured meats (42). The addition of a 1.5% or higher
concentrations of sodium lactate in marinated sous-vide-cooked chicken breast prod-
ucts led to the delay in the germination and outgrowth of spores of enterotoxigenic C.
perfringens during storage at 19 and 25°C (43). Potassium lactate at 2% effectively
restricted growth of a spore cocktail from 3 different C. perfringens strains during
extended cooling of cooked uncured ground turkey breasts (42). However, calcium
lactate was more effective than sodium lactate and potassium lactate in controlling
germination and outgrowth a of spore cocktail from 3 C. perfringens strains in injected
pork during a deviated chilling regimen (41).

Acetic acid, which is mostly used as vinegar, has been successfully applied for
microbial growth inhibition and cell viability reduction for both Gram-positive and
Gram-negative bacteria in different types of foods (46). Vinegar has been used as a
condiment and food ingredient for the purpose of flavoring and preserving foods for
thousands of years (47). A typical vinegar contains 5 to 40% acetic acid and other
compounds that give the characteristic aroma (46). Recently, it was reported that a
blend of vinegar and buffered lemon juice concentrate (MOStatin LV1) at different
concentrations (0%, 2%, and 2.5%) was highly effective in controlling growth of C.
perfringens spores in reduced-NaCl roast beef during abusive exponential cooling,
regardless of the level of NaCl added and the cooling time used (48). The buffered
vinegar (MOstatin V) at 2.5% and a blend of buffered lemon juice concentrate and
vinegar (MOStatin LV) at 3.5% could also inhibit C. perfringens spore germination and
outgrowth in ground turkey roast containing minimal ingredients (49).

Phosphates. Long-chain inorganic phosphates (polyphosphates [polyPs]) and the
orthophosphate derivative blends have been extensively used in meat and dairy
products for many years (50). These phosphates and their derivatives are used as food
additives owing to their functional aspects regarding emulsification, stabilization,
oxidation prevention, and flavor protection and, most importantly, as antimicrobial
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agents. Antimicrobial activities of variable-length phosphates (ortho-, pyro-, and
polyphosphates) have been shown against many different bacteria, including C. per-
fringens (51–53). Our group evaluated the inhibitory effects of various polyPs on C.
perfringens and demonstrated the following: (i) polyP significantly inhibited sporulation
of C. perfringens by reducing sporulating cells by �5 to 6 log10; (ii) while C. perfringens
spores were able to germinate in the presence of 1% sodium tripolyphosphate (STPP),
their outgrowth was significantly inhibited; and (iii) STPP (at levels of �0.8%) exhibited
antimicrobial activity against a spore cocktail from five different C. perfringens C-cpe
isolates in chicken meat (52) (Table 1). Singh et al. found that the combination of
sodium acid pyrophosphates from different sources were more effective than tetraso-
dium pyrophosphate in inhibition of C. perfringens growth in different meat products
during abusive chilling conditions (53). However, the efficacy of these pyrophosphates
depends on the type of meat product and dose of pyrophosphate (53).

NATURAL ANTIMICROBIALS

There are antimicrobial agents for inhibiting C. perfringens growth that are derived
from natural sources, including animals, plants, and microorganisms (54, 55). Numerous
researchers have studied the naturally occurring antimicrobial agents with regard to
their properties of inhibition and inactivation of spoilage and disease-causing micro-
organisms (54, 55). The results revealed that many of them demonstrate a strong
bactericidal effect and some of them are also inhibitory against spores of food-related
bacteria; thus, there is a promising potential of these natural antimicrobial agents for
being used as food preservatives. Table 1 listed some of the natural antimicrobials and
the conditions for optimum inhibitory effects against C. perfringens spores and vege-
tative cells.

EOs. Essential oils (EOs) are secondary metabolites of aromatic plants having the
characteristics of being volatile, natural, complex compounds with strong odors (56,
57). Historically, EOs have been used for thousands of years as food preservatives, for
medicinal purposes, and for flavor and aroma. Many EOs have been shown to have
antimicrobial activities against a broad range of bacteria, including C. perfringens (58).
Cinnamaldehyde is one of the most common plant-derived EOs; it is listed as GRAS by
the Flavor and Extract Manufacturers Association (FEMA) (59) and exhibited strong
antibacterial activity against C. perfringens vegetative cells (Tables 1 and 2) (60).
Cinnamaldehyde (�0.5%, wt/vol) was also effective in controlling C. perfringens spore
germination and outgrowth in cooked ground beef and ground turkey during abusive
chilling conditions (61, 62).

Carvacrol, thymol, and oregano oils are the key components in the EOs of oregano
and thyme (58). The inhibitory effect of these EOs against germination and outgrowth
of C. perfringens spores has been evaluated after deliberately contaminating cooked
ground meats with C. perfringens spores prior to cooling in a deviated process from the
U.S. Department of Agriculture Food Safety and Inspection Service (USDA-FSIS) stabi-
lization guidelines for cooling meat products (61, 62). Carvacrol (1 to 2%, wt/vol),
thymol (1 to 2%, wt/wt), and oregano oil (2%, wt/wt) effectively restricted C. perfringens
growth from spores during 12 to 21 h of cooling from 54.4 to 7.2°C, with less than 1 log

TABLE 2 Antimicrobial activities of selected essential oils against C. perfringens

EO MIC (�g/ml) Reference

Cinnamaldehyde 140 60
trans-Cinnamaldehydea 167 65
Thymol 375 63
Carvacrol 375 63
2-tert-Butyl-6-methyphenola 175 65
Chamomile roman oila 450 65
Citral oila 275 65
Citronellala 400 65
Geraniola 450 65
aThe MIC95 is shown.

Minireview Applied and Environmental Microbiology

January 2017 Volume 83 Issue 1 e02731-16 aem.asm.org 6

http://aem.asm.org


CFU/g increase in the bacterial count in cooked ground beef (61). Another study, by
Juneja and Friedman, showed that higher concentrations (2%, wt/wt) of carvacrol,
thymol, and oregano oils were needed to completely restrict the growth of C. perfrin-
gens spores following more than 15 h of cooling of cooked ground turkey (62). This
clearly indicates that the inhibitory effects of these EOs are variable and depend on the
type and source of meat. Also, both thymol and carvacrol showed strong antibacterial
activity against C. perfringens cells under in vitro conditions (Table 2) (63). Although in
vivo studies with a chicken model showed that the supplementation of food with
thymol and carvacrol did not reduce the number of C. perfringens in the chicken, it
caused the reduction of the numbers of other bacteria and intestinal lesions in the gut
and also enhanced the intestinal integrity and immune response (63, 64).

An extensive study by Si et al. with 66 different EOs demonstrated that 33 EOs
inhibited �80% C. perfringens growth, while 9 EOs showed 50 to 80% inhibition and 24
EOs showed �50% inhibition (65). Out of the 33 EOs that exhibited �80% inhibition,
seven were further investigated in a chicken model for their inhibitory potency against
C. perfringens under acidic conditions. Excluding citral oil and geraniol, the inhibitory
activities of the other five compounds (2-tert-butyl-6-methylphenol, carvacrol, chamo-
mile roman oil, citronellal, and trans-cinnamaldehyde) were stable under acidic condi-
tions (pH 2.0) (65). A few other studies also reported antimicrobial activity of some of
the EOs against the C. perfringens growth (66–68). All these studies collectively suggest
the potential use of EOs to reduce the number of C. perfringens organisms in food
products.

Tannins. Tannins are water-soluble phenolic compounds that can be found in a

variety of plants and are used as food additives or in leather processing industries due
to their profound antimicrobial activity (69, 70). The effects of tannic acid and its
hydrolytic product, gallic acid, were evaluated against vegetative cells of C. perfringens
strain ATCC 13124 (71). The results showed that, tannic acid exhibited significant
inhibition (lowest inhibitory concentration, 3.1 �M) of C. perfringens growth at concen-
trations greater than 10 �g/ml, while gallic acid showed no observable growth inhibi-
tion at concentrations up to 1,000 �g/ml (71). This result suggests that the chemical
structure of tannic acid is vital for retention of its antimicrobial activity. The source of
tannins may also have an impact on their antimicrobial activity against C. perfringens.
One study reported that the tannins from chestnut had higher antibacterial activity
against C. perfringens than tannins from quebracho plants (72). However, tannins from
both chestnut and quebracho could reduce the cytotoxicity of two C. perfringens toxins,
alpha toxin and epsilon toxin, in MDCK cells (72). C. perfringens also showed no or very
minimal resistance development against tannins over time compared to other antimi-
crobial products (73).

Green tea extracts. Green tea is one of the most consumed beverages worldwide

and has beneficial effects on human health. It shows some antimicrobial activity against
a wide range of bacteria, including C. perfringens (74). The activities of different
polyphenols from extracts of green tea leaves against the growth of C. perfringens ATCC
13124 were evaluated by the disc diffusion method, and it was found that gallocatechin
and epigallocatechin showed the strongest growth inhibitory activity (75). The inhibi-
tory effect of green tea extracts against germination and outgrowth of C. perfringens
spores in different cooked meat products during deviated chilling regimens up to 21 h
was also investigated (76). At 2.0%, the green tea extract with higher catechin content
was successful in arresting growth from spores in all tested meats during a 21-h cooling
period from 54.4 to 7.2°C (76). However, the efficacy of green tea extracts to prevent C.
perfringens spore germination and outgrowth seems to be concentration and condition
dependent (a higher dose of green tea extracts prevents C. perfringens growth in meat
products for a longer storage time) (76). The catechin content of extracts is considered
the key factor for the observed antibacterial activity, and this may partly explain the
lack of activity of green tea extract with a lower total catechin content.
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Fatty acids. Antimicrobial activity of short- and long-chain fatty acids against C.

perfringens growth has been demonstrated in a few studies (77–79). However, long-
chain fatty acids have been found to be more effective than short-chain fatty acids in
inhibiting the growth of C. perfringens (77, 78). Saturated lauric acid (C12:0) and
unsaturated linoleic acid (C18:2) at 0.5 mmol/liter were able to completely inhibit C.
perfringens (77). A more recent study by Skøivanová et al. determined the susceptibility
of vegetative cells of C. perfringens ATCC 13124 and CNCTC5459 (a clinical isolate) to
different short- to long-chain fatty acids (79). Among them, caprylic (C8:0), capric (C10:0),
lauric (C12:0), myristic (C14:0), and oleic (C18:0) acids could effectively inhibit growth of
both strains, and linoleic acid (C18:2) inhibited only strain CNCTC5459 and not strain
ATCC 13124 (79). Lauric acid (C12:0) was proven to be the most potent antimicrobial,
followed by myristic acid (C14:0) and capric acid (C10:0) (79). In an in vivo study,
Timbermont et al. showed that the incidence of necrotic enteritis caused by C.
perfringens in broiler chicken decreased if chickens were fed a diet supplemented with
butyric acid in combination with lauric acid, thymol, cinnamaldehyde, and EO of
eucalyptus at a lower dose (80).

Lysozyme. Lysozyme is a bacteriolytic enzyme that is obtained mainly from hen egg
white and represents 3 to 5% of the egg albumin protein. It received GRAS status as a
direct food additive and has been proven to be nontoxic to humans (36, 55). Lysozyme
possesses a broad-spectrum antimicrobial activity and is commonly used in cheese
production to prevent the late-blowing type of defect caused by Clostridium spp. (81,
82). Lysozyme inactivates bacterial cells by weakening the cell wall peptidoglycan (PG)
layers via the hydrolysis of the �-1,4 linkages between N-acetylglucosamine and
N-acetylmuramic acid, thus making it an effective antimicrobial agent against numer-
ous Gram-positive bacteria (54, 83, 84). Lysozyme can inhibit the growth of C. perfrin-
gens vegetative cells at 156 �g/ml (85) (Table 1). However, sublethal concentrations of
lysozyme could inhibit the production of toxins (85). Based on the study of the effect
of lysozyme on Alicyclobacillus acidoterrestris, it was hypothesized that lysozyme may
inactivate spores by causing a rapid hydrolysis of the spore cortex, resulting in damage
of the spore core (86). This notion may be supported by the fact that lysozyme can
degrade the cortex of decoated C. perfringens spores lacking the cortex lytic enzyme
SleC, leading to the resumption of wild-type-level colony-forming efficiency of sleC
spores (87).

Chitosan. Chitosan is a biopolymer derived from the partial de-N-acetylation of
chitin, which is the key component in the exoskeletons of crustaceans and is regarded
as the second most abundant biopolymer in nature, following cellulose (88). It is
nontoxic, nonantigenic, biocompatible, and biofunctional, and it has been approved as
a food additive for many years. Moreover, its antimicrobial property makes it a potential
food preservative in a variety of food products (89). A study by Juneja et al. demon-
strated that 3% chitosan (degree of acetylation, 0.14) can reduce germination and
outgrowth of spores of C. perfringens in cooked beef and turkeys by 4 to 5 log units
during extended chilling regimens up to 18 h (90).

Nisin. Nisin, a class I bacteriocin and a polypeptide of 34 amino acid residues
produced by certain strains of Lactococcus lactis subsp. lactis, has been successfully
used as a food preservative in a variety of food products (91). It is approved by the FDA
and WHO as GRAS and is permitted to be used in various food products in more than
50 countries. Nisin is an attractive option as a food additive because of its natural
source and high effectiveness against a broad spectrum of Gram-positive bacteria.
Several reports demonstrated the inhibitory activity of nisin alone or in conjunction
with other food preservation technologies, such as heat and HHP, in controlling spores
of Clostridium spp. in a variety of food products (26, 92). Nisin exerts its inhibitory effect
against spore outgrowth and vegetative growth of C. perfringens FP and NFB isolates
under laboratory conditions, but in a meat model system no such effect was observed
(92). Nisin causes the lengthening of the lag phase of vegetative growth of C. perfrin-
gens type A strain NCTC8798 in a concentration-dependent manner (92). The higher the
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concentration of nisin, the longer the lag phase observed. Nisin at 500 IU/ml or higher
is thus required to prevent growth of C. perfringens NCTC8798 for up to 2 weeks (92).

Lacticin. Another type of class I bacteriocin is the two-component heat-stable
lantibiotic lacticin 3147, produced by strains of Lactococcus lactis DPC 3147. Lacticin
3147 was reported to have a broad-spectrum inhibition toward Gram-positive bacteria,
similar to that of nisin (93), but it is distinct from nisin in terms of its solubility and being
active at physiological pH (94). It has been reported that the combination of lacticin and
2% sodium lactate was effective in reducing C. perfringens growth in fresh pork sausage
(95).

Pediocin. Pediocins are well-known class II-type bacteriocins that are produced by
Pediococcus spp. These are small, heat-stable, non-lanthionine-containing membrane
active peptides (96). Pediocins are also affirmed as GRAS additives for application in
certain food products (55). Different types of pediocins showed inhibitory activities
against C. perfringens growth, such as pediocin AcH and pediocin PA-1 from Pediococ-
cus acidilactici and pediocin A from Pediococcus pentosaceus (96–98). Pediocin PA-1
could lower the counts of C. perfringens by 2 and 0.8 log units, respectively, when
frankfurters were stored at 10°C for 60 days and at 15°C for 30 days (97). Grilli et al.
showed that a diet supplemented with pediocin A significantly improved the growth of
broilers challenged with C. perfringens for up to 42 days (98).

GERMINATION-INDUCED INACTIVATION STRATEGIES

Having intrinsic resistance properties, C. perfringens spores can survive in the
environment for extended periods (i.e., decades), and once these dormant spores
come in contact with small molecules termed germinates, they return to being
vegetative cells via the germination process (99, 100). In recent years, significant
progress has been made in understanding the mechanism of C. perfringens spore
germination, leading to the identification and characterization of suitable germi-
nants and germinant receptors for spores of C. perfringens FP and NFB strains (99,
101). Although there are differences in the preference of germinants among the
strains, some germinants (such as AK or L-cysteine) can induce germination of
spores of a wide range of C. perfringens strains (99, 102). Such understanding has led
to the development of novel strategies involving induction of spore germination
followed by subsequent killing of germinated spores with mild treatments (39, 92,
103, 104), as in the following examples. (i) The application of germinant AK in meat
products followed by HHP treatment (586 MPa) at high temperature (73°C for 10
min) significantly killed C. perfringens spores in the meat products (103) (Table 1).
(ii) Permissive levels of chemical preservatives (such as nisin, sorbate, and benzoate)
effectively arrested outgrowth of germinated C. perfringens spores in rich medium.
However, higher levels of chemicals were needed to achieve significant inhibitory
effects against C. perfringens spores inoculated into chicken meat (39, 91). (iii))
Triggering spore germination considerably increased the sporicidal activity of
commonly used disinfectants against C. perfringens FP spores attached to stainless
steel chips (99). In addition, this germination-induced inactivation strategy also
proved to be effective in killing spores from other Clostridium species (105–107).
Collectively, triggering spore germination followed by inactivation treatment rep-
resents a novel strategy to enhance killing of Clostridium spores.

CHALLENGES OF INACTIVATION STRATEGIES AND FUTURE DIRECTIONS

Although there has been significant success in inactivating C. perfringens vegetative
cells, the inactivation or elimination of C. perfringens spores from food products still
remains a challenge. This is mostly because the effect of extreme physical stress
damages the food quality and the use of excessive chemical preservatives results in
toxicity and causes harm to human health. Furthermore, the addition of antimicrobial
agents into food products might exhibit nonspecific inhibitory activity toward benefi-
cial microorganisms harbored in the GI tract, causing an imbalance in the gut microflora
(108, 109). These issues emphasize the importance of identifying the active compounds
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and evaluating their toxicity prior to application to food products in order to warrant
their safe usage. In addition, the elucidation of mechanisms of action of different
physical and chemical techniques and naturally derived antimicrobials is critical for the
efficient utilization of these treatments against the growth of C. perfringens spores and
vegetative cells.

The recently developed germination-induced inactivation strategies also have some
challenges (26, 103, 104). For example, due to spore germination heterogeneity, in a
spore population some spores germinate within minutes and some takes hours or even
longer to germinate (110). Therefore, further studies are needed to improve germina-
tion conditions for superdormant spores that exhibit slow or no germination and to
validate the effectiveness of the germination-induced inactivation strategy under the
practical conditions of food industry environments.
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